
1

This lecture is mostly about HOW to verify a SystemVerilog design. 

Lecture 3 Slide 1PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Lecture 3

Verilator, Testbench and Vbuddy

Prof Peter YK Cheung
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/
E-mail: p.cheung@imperial.ac.uk

http://www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/


2

Here are a list of learning outcome for this lecture.  It is also tightly 
coupled with Lab 1, which will take you through the steps in verifying a 
SystemVerilog module is working properly using a number of tools.

Lecture 3 Slide 2PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Learning outcomes

v Different types of simulators
v Verify a SystemVerilog (SV) module with Verilator

v Template for a Verilator testbench

v Using a shell script as shortcut
v Verify a SV module using gtkWave waveform viewer

v Verify a SV module using Vbuddy

v What is in Lab 1?

Slides in this lecture are partly derived and modified from:

“Verilator: Fast, Free, But for me?”, a talk by Wilson Snyder 
(created of Verilator) – http://www.veripool.org/papers



3

Some history about Verilator.

It started life as a synthesis program that takes Verilog description and 
turn it into C++ code that one can compile and run just like any other 
C++ programme.  

This initial work was then further developed by Wilson Snyder since 
2001, and now grow into an open-source community with many 
contributors.  

I have chosen this in preference to what was used previously for 
teaching this module because:
1. It is free;
2. It works on all platforms (even with Apple silicon);
3. It is fast, particularly for processor simulation.

Lecture 3 Slide 3PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Verilator History

v Verilator was born in 1994
§ Verilog was the new Synthesis Language

§ C++ was the Test-bench Language

§ Paul Wasson synthesized Verilog into C++

v Wilson Snyder created Verilator since 2001
§ Open-source and free

§ Strong community with many contributors

§ Works on all platforms (PC, Linux, MacOS)

§ Fast, particularly with multithreading



4

Verilator is now adopted by many companies and universities.  This is 
their list of users back in 2010.  Imperial College was already a user!

Now the list is actually too large to include in a slide like this.  Basically 
almost all of electronic chip design places and many many universities 
have adopted Verilator either for research, teaching, or both!

Lecture 3 Slide 4PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Verilator User Base



5

GNU toolchain for RISC-V provides an instruction level simulator.  This is fast, but is 
devoid of any reference or specification of hardware. It is NOT useful to produce a 
final processor, but can be used to generate expected results. It is very fast, but 
lacks details.

Verilator is the 2nd type, which is cycle-accurate.  Each clock cycle marks a time step, 
and between each cycle, all logic specifications are evaluated.  Verilator synthesis 
compiler is excellent in checking the synthesizability of the SV specification.  If 
Verilator can produce a working design, this design is likely to be synthesizable on 
FPGA or other commercial tools to produce an actual physical chip design.  What is 
lacking is timing information.  The chip will work, but not necessary at a frequency 
you want or need. Furthermore, Verilator only understands two-level logic: ’0’ or ‘1’. 
Therefore tri-state busses can be a problem to simulate. 

Finally the most comprehensive type of simulator for digital is ”event-driven” 
simulator.  This type of simulators generates an event when an input signal changes 
state, which is put onto the event queue. The impact of this event is evaluated, and 
produces other events internal to the circuit. These are also put onto the event 
queue.  A simulation step is completed when ALL events in the event queue are 
evaluated for the current time.  Event-driven simulator can handle time delay and is 
therefore able to evaluate propagation delay, race conditions and glitches.

Lecture 3 Slide 5PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Three types of simulator
1. Instruction level simulator

§ Processor instruction-level function
§ No hardware representation, no concept of clock
§ Written in high level language such as C or C++
§ GNU RISC-V toolchain includes such a simulator

2. Cycle accurate simulator
§ Simulate HDL specification of hardware, e.g. SystemVerilog
§ All signal values correct cycle-by-cycle
§ No time delay information
§ Verilator is an example – only two values: ”0” or “1”

3. Event-driven simulator
§ Change signal produces event in an event queue
§ Simulate delay using timing model
§ Capture glitches
§ Slower and costly. Example: ModelSim



6

In Lab 1, you are to design an 8-bit counter as shown here.  The counter has 
three inputs: 
1. clk – the clock signal (positive edge triggered)
2. rst – the reset signal (high reset), synchronous to clk
3. en – the enable signal, i.e. counting only if en = ‘1’
The counter has output count[7:0].

Note the following:
1. We use parameter to define the width of the counter to be 8-bit. The use 

of parameter allows the same module to be used with different counter 
width (covered in next lecture).

2. The use of concatenation {.} to create 8-bit value with the LSB = en signal.

Lecture 3 Slide 6PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Example: Simple Counter

count[WIDTH-1:0]

counter1

clk

rst

en



7

This is how the SV code is mapped to the actual hardware synthesized by 
Verilator.

The if-else statement is mapped to the MUX.  The couting action is achieved 
via the adder on the feedback path of the register.  

Lecture 3 Slide 7PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Mapping from SV to hardware



8

Before this module can be simulated and verified, we need to create a 
testbench program.  
SystemVerilog was designed also with verification in mind.  However, 
Verilator is designed to synthesize hardware, and does not cope with those 
parts of SV that are not synthesizable.  Therefore, to test our counter, we 
need to write a separate testbench file in C++.
This testbench file is essentially a “wrapper” for the module counter, which is 
the Device Under Test (or DUT).  It produces the input stimuli to the DUT, 
receive the results (which is the signal count[7:0]) and help the user to 
determine whether the DUT is doing what it is suppose to.
One way to verify the hardware functionality is to produce a trace file which 
contain a record of all the signals (at the top-level) over time.  This can then 
be interrogated and displayed using another program, such as gtkWave, 
which is an open-source wave viewing program.

Lecture 3 Slide 8PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Testbench

DUT

Vcounter

C++ Testbench

stimuli generator & 
output checker

input
signals

output
signals

trace signals

counter_tb.cpp



9

This slide summaries the various programs required to take a SystemVerilog 
source code, and turn it into an executeable program.  
Consider our “counter” module. Here are the steps:
1. Use VS Code to create and edit counter.sv.
2. Use VS code to create and edit the testbench file counter_tb.cpp.
3. Use Verilator to compile the HDL source code (.sv) with the testbench 

(.cpp) and the Vbuddy API (Vbuddy.cpp) to produce the C++ program 
which contains the synthesized hardware, the testbench procedures etc., 
and a bunch of header files.  

4. Verilator also produces a make file (Vcount.mk) which tells the C++ how 
to compile and link everything together to produce the final executeable 
model of the counter with built-in testbench (the Vcounter binary file). 

5. This executeable binary of the counter is a native ce program which can 
be executed by the computer to produce the output signals, which can be 
displayed as waveform or even drive an external unit such as the Vbuddy.

Lecture 3 Slide 9PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

How does Verilator work?

VS code

counter.sv

GNU tools
C++ compiler

& linker

counter_tb.cpp

Vbuddy.cpp

Vcounter.mk

Verilator generated
objects & headers

counter.vcd

gtkWave

Vcounter
(executable)

Vbuddy



10

The testbench file has a standard structure with different sections.  They are 
highlighted here in separate RED boxes with explanation. 
1. If the module is called counter, a header file “Vcounter.h” is produced, which 

defines the interface signals for this module. Verilated.h must always be 
included. If you want Verilator to produce the trace file for laer inspection, 
Verilated_vcd_c.h must also be included.

2. The next section declares internal variables (they are not signals) for the 
testbench. In this case, i counts the number of clock cycles, and clk is another 
internal variable to count the phase of the clock (high, low). 

3. Vcounter* top = new Vcounter;  is the statement that instantiate the 
module (or DUT).  If the module is called “encoder”, then this line will be:

 Vencoder*  top = new Vencoder;

4. This segment is the same for all testbenches. It tells Verilator to produce the 
trace file ”counter.vcd” for you to inspect later.

Lecture 3 Slide 10PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Format of the Testbench (1)

Mandatory header files. Note the 
name Vcounter.h for the module 
counter. 

i counts the number of clock cycles to 
simulate. clk is the module clock signal.

Instantiate the counter module as Vcounter, 
which is the name of all generated files.  This is 
the DUT!

Turn on signal tracing, and tell 
Verilator to dump the waveform 
data to counter.vcd



11

5. This segment initialize the state of the input signals before clocking the circuit.   
“top” is the name given to the DUT in 3) above.  In C++ terms, this is a pointer 
pointing to a structure that has all the input and output signals.  

 Therefore    top->rst = 1 initializes the rst signal of counter to a ‘1’.
6. The next segment is the first for-loop which cycle through the clock cycles i. this 

is th
7. The inner for-loop is the part that does the business. It dumps the signal values 

to the trace file specified in 4), toggles the clk signal top->clk, and then perform 
a simulation step with top->eval() function.  It does it only twice because each 
clock cycle has two phases: negative and positive edges.

8. The final section changes the stimuli signals within the simulation loop.

These 8 segments of the testbench require modifications depending on the DUT, the 
required signal stimuli and how you might want to observe the output signals (such 
as using Vbuddy).

Lecture 3 Slide 11PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Set initial signal levels. Top is the name 
of the top-level entity.  Only the top-level 
signals are visible.

This is the for-loop that toggles the clock. It 
also output the trace for each half of the clock 
cycle, and force the model to evaluate on both 
edges of the clock.

This is the for-loop where simulation 
happens. i counts the clock cycles.

Change rst and en signals 
during simulation.

Format of the Testbench (2)



12

Once the SV source file counter.sv and the testbench file counter_tb.cpp have been 
created, the following steps need to be taken:
1. Run Verilator with this command in the terminal window:

-Wall : report all warnings
--cc : generate C++ instead of SystemC codes
--trace :  produce trace for all signals
--exe :   produce an executeable model Vcount using counter_tb.cpp as 
testbench.

2. Verilator produces a make file (Vcounter.mk), which uses the make utility to 
build the final simulation model.  The command is: 

Run this make command telling it to that object and header files are found in 
the obj_dir/  folder, using the make rules found in Vcounter.mk.
The result of this make is to produce an executeable model of the counter in the 
obj_dir/ folder called Vcounter.

3. The final step is simply to run the binary file in obj_dir/Vcounter.

Lecture 3 Slide 12PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Making the final simulation model



13

Once the executeable model of the counter, Vcounter, is produce, we can run it. 

This has two consequences.  The testbench program will send input signals to the 
counter and a set of waveform traces will be produced in the file counter.vcd.

Also, you can use the Vbuddy.cpp API calls to send messages to the Vbuddy board, 
which will display the results of the DUT for you to inspect.  You will find how this 
works during Lab 1.

Lecture 3 Slide 13PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Vcounter is the executable model of counter

VS code

counter.sv

GNU tools
C++ compiler

& linker

counter_tb.cpp

Vbuddy.cpp

Vcounter.mk

Verilator generated
objects & headers

counter.vcd

gtkWave

Vcounter
(executable)

Vbuddy



14

Once the executeable model terminates, the trace file counter.vcd is produced.  You 
can open and load this trace file using the waveform viewer app gtkWave.  Here is a 
sample of the waveforms being displayed by gtkWave.

Since Verilator is cycle-by-cycle simulator, the time axis has no significant.  Each 
clock tick (i.e. half a clock cycle) is display as 1ps, which is of course nonsense.

Nevertheless, the states that the circuit goes through are accurate.  The counter 
output count[7:0] shows values that is incrementing one every clock cycle.  The 
effect of rst and en signals can also be observed.

Lecture 3 Slide 14PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Checking the simulation results
counter.vcd gtkWave



15

Inspecting waveforms to verify a piece of digital hardware working is really boring.  
Therefore, I have designed a board called Vbuddy to spice things up.  I called it 
Vbuddy because it is a good companion to V, which stands for RISC-V, Verilog or 
Verilator – take your pick!
Vbuddy receives messages over the USB cable from the computer running the 
Verilated model of your hardware.  The microcontroller board is itself a RISC-V 
processor, the ESP32-C3 made by Espressif. The board is from AI-Thinker.  It also 
consists of various components as shown above.

A set of API calls (written in C++) are provided for use with the testbench to do 
various things such as displaying data as a waveform on the TFT display while 
simulation is happening, or show the counter output value on 7-segment displays 
(simulated) or capture realtime audio signal with the microphone, amplifier and A-
to-D converter.

Lecture 3 Slide 15PYKC  15 Oct 2024 EIE2 Instruction Architectures & Compilers

Vbuddy

RESET ButtonUSB Selftest
or NORM

TFT Display

LP filters

Microphone
Amplifier

IMU

EC11
Rotary Encoder

on mic

DAC

Analogue Output

Neopixel LEDs

ESP32-C3
microcontroller


